.5x^2+40x+250=0

Simple and best practice solution for .5x^2+40x+250=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5x^2+40x+250=0 equation:



.5x^2+40x+250=0
a = .5; b = 40; c = +250;
Δ = b2-4ac
Δ = 402-4·.5·250
Δ = 1100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1100}=\sqrt{100*11}=\sqrt{100}*\sqrt{11}=10\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{11}}{2*.5}=\frac{-40-10\sqrt{11}}{1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{11}}{2*.5}=\frac{-40+10\sqrt{11}}{1} $

See similar equations:

| 60+40+2x+80+x+3x+80+2x+2x=180 | | 455+2-1(455x2/2)=456 | | 11x+4-3x-9=18+5x-2 | | 108=(2n+4)(2n+1) | | 6x-10=4x=12 | | 4x²-6x-5=0 | | 3n2=29 | | 3(4r+1)=-21 | | (4x-7)^3=0 | | 68=6r+5 | | −x4+8x2−15=0 | | 4897=7u-3 | | 4897=7v-3 | | 3=4q-1 | | 6s-9=39 | | 71.80=p/17.95 | | 3x-7)/12-(1/6(2x-3)-(x-1)/8)=0 | | (3x-7)/12=1/6(2x-3)-(x-1)/8 | | -2+x2/5-3=0 | | -x⁴+8x²-15=0 | | 3z/8=-21 | | 196/x=5 | | 2x^3-5x^2+4x+0=0 | | x=4(3)-11 | | x=4x(3)-11 | | 15(x^2+8)=(15^3)^2x | | 107+(5x+28)=180 | | 122(x)=7x-4 | | 32+x/3=2 | | -2.5x/0.72=x | | x=2x-3x+4x=8 | | $x=2x-3x+4x=8$ |

Equations solver categories